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THE PLANE PROBLEM OF HYDROELASTIC STABILITY FOR A HINGE-SUPPORTED PLATE* 

B.YA. KANTOR and M.P. KVITNITSKII 

The plane problem of hydroelasticity on the stability of a hinge-supported 
plate of infinite span placed in a rigid screen is considered in the case 
of unilateral flow of an ideal incompressible fluid. An analytical 
representation is obtained for the matrix elements of the averaged aero- 
dynamic loads. The possibility of using the method reduction in the 
problem under consideration , i.e., of replacing the infinite determinant 
by a truncated determinant is investigated. Relations are obtained for 
the flutter velocity as a function of the hydroelasticity and axial force 
parameters. The problem under consideration was solved in /l-3/ by 
different methods, where, by assuming the convergence of the infinite 
determinant to which application of the Bubnov-Galerkin method leads, 
consideration was confined to two coordinate functions and the forces 
acting on the fluid side were determined numerically. Only the boundary 
of the static stability domain was found. 

1. Formulation of the hydroelasticity problem. We will write the equation of the 
cylindrical vibrations of a plate extended in the stream direction by forces H as follows: 

DW,,, - Hw,, + shp,m, + hp,w,, = P ("1.1) 

Here w (r, t) and p(r,t) are the plate deflection and the fluid pressure thereon, D 

is the bending stiffness, E isthedamping coefficient, h is the thickness, and pO is the 
specific density of the plate material. 

The hinge clamping boundary conditions at the points x -;&a have the form 

w = wx* = 0 (1.2) 

The potential of the perturbed fluid velocities @((t,z, t) satisfies the Laplace equation, 
the damping condition, and the non-penetration condition 

@,, + CL2 = 0, z< 0 (1.3) 

lim VQ = 0, r, = l/w (1.4) 7*-m 
0'; = w1 + VW,, z E L-a; al. z = 0 (1.5) 

&= 0, x@ [-a;al, 2 = 0 

Here V is the velocity of unperturbed fluid motion. 
Using the representation of a harmonic function in the form of the potential difference 

of a simple and double layer (for instance /4/I, and taking into account that the cosine of 
the angle between the tangent plane and the normal to the surface z = w(x, t) is small com- 
pared with unity, we obtain by virtue of (1.5) 
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The fluid pressure is determined from the linearized Cauchy-Lagrange integral (the static 
pressure is taken to be equal to zero, and p is the fluid density) 

j' =- --p (CD, m; V(l)\)r__" (1.i) 

Substituting (1.6) and (1.7) into (l.l), we obtain the following integrodifferential 
equation for the flow around the plate: 

(1.81 

which agrees with that presented in /l/ for the problem of circulation-free flow around a 
symmetrical slender wing. 

2. Solution of the hydrodynamic problem. We will find the solution of (1.8) by 
the Bubnov-Galerkin method. We take 

cz 

m(.r, t)= y (fix-,(t) cos (2k Q1)ns $- fzr(t)sin F) 
h-d 

We introduce the notation 

+$, E%$' iI-=*, Lt,=$$J/+ 

% Q,=rZ,I/j'+Nj", oj=~, r==Q,t 

S=&. 
V 

u=-, 2P4 
2&J 

(c = - 
poh 

crr(E,P)= 5 *aE', cp,(E,B)= $ +++E' 
-1 -1 

(2.1) 

(2.2) 

where the integrals cpr and 'pz should be understood in the Cauchy principal value sense. 
Substituting (2.1) into (1.81, applying the Bubnov-Galerkin procedure and taking account 

of (2.2), we obtain a system of ordinary differential equations in fj($ 

fj"+gfj'+olafi+F1(T)=O (j=i,&...) (2.3) 
oz 

Fj = x (*/2&j&k'* + 2ucZ’j~f,’ - 2~‘~Ljbfk) 
x=1 

I 
(Dj, = 
1 1 

1 -- 
x ss 

cos~cos~ln(E-_~Id~‘dS, j=2m-1, k=2n-1 
-1-I 

, 1 1 
1 -- 
x ss 

' sin~sin~I”IE-5’idg’dS, j=2m, k=2n 
-1 -1 

,O, j+k- odd 

*-&{IylI(&$)cosqd& j=2m-I, k=2n 

Tik=’ -t f ‘pl (5, $-)sinqdE. j=2m, k=2n- 1 
-1 

. 0, j + k - even 

‘;%~I(&~)cos~d& j=Zm-1, k=2n-4 

LJk = 
_ $ { Tz (5, *) sin+dE, j=Bm, k=2n 

-1 

, 0. j -+ k - odd (n, m = I, 2, . . .) 
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The functions 'pl and 'pz can be represented in the form 

‘~1 (E, B) = A sin Bf - B cos P%, ‘pz (5, fN = A cos 0% f 
B sin p% 

A = ci (B + BE) - ci(B - BE), B = n + ai (B + K) + 

(2.4) 

si (P - BE) 
m 

si (2)=-I - 
s 
+!L&, ci(,r)z-I*& 

r IX 

Substituting (2.4) into (2.3) and integrating, we obtain 
elements of the matrices of the averaged aerodynamic loads in 

a representation of the non-zero 
terms of known functions 

(2.5j 

2(-1fj+k)‘2 [ci (nj) - ci (nli) + Ink - lnj](l - 6jk) 
x (ka - r2) 

%k=&[ ci(nk)-G-(-l)kIn2-1n-$--~Lk,]6jk + 

8(-')(Kez'k+')'* [c/c* _ j2) (&'+ (_ l)kjln2) + 
?ek/ (j2 -kk') 

kz(-ci(nj)+ h%)+ ja(ei(xk)- In+)](l- hjh.) 

L,k = @jk = 0, j + k = .Zn - 1 

T,, = (_Jp+j-1)/z 
I 

n2i 
2(p- 

i si W + k si (ni) >c 
p - p 

Ji + sign (j - k)l + Lb!!~~‘~~L!.?!Q[l _sign(j_k)l]. 

Tjk = -T,j, j = 2n - 1, !X = 2m; 7'1, = 0,j + k = 2n 

(n. m = 1, 2, . . .) 

t6jk is the Kronecker delta, and G = 0.577 . . . is Euler's constant). 
In the case under consideration the matrices Ljk and @jr are SyIUIUStriC and Satisfy 

reciprocity relationships /5/ characteristic for non-conservative problems of the theory of 
elastic stability Tjk = (-‘i)k+j Tk]. 

The solution of system (2.3) will be sought in the form fj = A@r, 
An uncambered plate shape is stable if all the roots of the characteristic equation 

det [(S’ + gS $- ~1’) Sjk $ ‘/,C@jkS’ + 2UCTjkS - .ZU2CLjkI = 0 (2.6) 

lie in the left half-plane /5/. The least value of u for which at least one of the roots s 
will be in the right half-plane is the critical velocity parameter. 

3. Investigation of the convergence. Using the asymptotic representations of the 
integral sine and cosine /6/ 

si(z)--_, ci(zr)-*, x,>! 

we obtain an estimate of the absolute values of the matrix elements of the averaged aerodynamic 
loads for j, k> 1 

Hence and henceforth At are certain constants independent of k and j. 
As we know /5/, an infinite determinant of the form 

A = I 6jk + djk I 
converges if the double series 

(3.1) 

(3.2) 
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converges (here and henceforth summation is over j and k between 1 and L). 
The determinant satisfying this condition is called normal. 
We will represent the determinant (2.6) in the form (3.1). To do this we divide the j-th 

row by (Oj and the k-th CO~UIIUI by (0~. We obtain, after reduction 

It follows from (2.2) for a membrane for D = 0 that ok = kT/%. Since ( li - j 1 ,, crrc + 

1/T 2 Bj'M?i* and k2+jZ<kj(j+k), we have 

Similar estimates 
ok = k2 in the case of 
vergence of the series 

are obviously not only conserved but also magnified for H = 0 
a plate. Thus, the convergence of series (3.2) depends on the 

We will examine first the case of a plate; then 

~<I-%[&++$-] (3.4) 

(3.3) 

and 
con- 

The double series comprised of the right-hand sides of inequalities (3.3) and (3.4) con- 
verge, from which the convergence of the series (3.2) follows. Therefore, the determinant 
(2.6) for a plate is in the class of convergent (normal) determinants. 

Let us now consider the case of a membrane, then 

We take jlk = n, where l<n<j and we introduce into the considerations the function 

f (n) = n21n ni[j" (n" - I)1 

It can be shown that for n E II; +x1 the minimum of f(n) is reached for n=l and 
equals 1/(2jz). Taking into account that the number of non-zero terms in the k-th column equals 
either ii2. or (j+ I)/2 but not less than j/6. we obtain 

i.e., as for a supersonic flow /5/, the sufficient criterion for series (3.2) to converge is 
not satisfied in the case of a membrane. 

The convergence of the determinant (2.6) was investigated numerically with a different 
number (up to twelve) coordinate functions retained in the expansion of the deflection. Results 
of the calculations showed that the determinant (2.6) converges even in the case of a membrane 
but the contribution of the higher modes to the pattern of vibrations is considerably more 
substantial than for a plate. 

For instance, for a plate the amplitudes of the third and fifth modes referred to the 
amplitude of the first mode are 0.44 and 0.23%, respectively, while for a membrane they are 
8 and 1%. Consequently, if a two-term approximation is justified for a plate, in the case of 
a membrane it is best to use a greater number of coordinate functions. 

In the general case of a plate where D and H differ from zero, wk2 = k4 +Nk’. A finite 
number k can obviously always be selected such that the inequality ok> A,k"l~ is always 
satisfied. Then we have for sufficiently large j and k 

and, therefore, the series (3.2) converges, though the convergence will be slower the greater 
the value of N, i.e., the more the plate approximates to a membrane. 

Thus for subsonic flow the determinant (2.6) converges for both a plate and a membrane. 

4. Numerical results. Retaining the first two terms in expansion (2.1), we obtain 
that flutter precedes static buckling (divergence in the first mode). An analogous pattern 
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was also observed in experiments /7/. The critical velocity of the divergence for a plate 
equals 

(4.1) 

The value 1.440 is obtained in /l-3/ for the coefficient on the right-hand side of (4.1) 
Utilization of a greater number of terms in expansion (2.1) does not alter the result in 
practice (for instance, keeping four terms of the series reduces the coefficient in question 
by just 0.04%). 

When taking account of two terms of the expansion (2.11, the condition for the generation 
of flutter has the form 

A,, + A*, -+ T,,=c2uZ - 4A,*A2, = II (4.2) 
Afk = (1 + V&j~) (or? - 2cu*L~,,), j, k = 1, 2 

The value of g was assumed to be zero in deriving relationship (4.21, since it has been 
shown /2/ that damping exerts no influence on the magnitude of the flutter velocity. 

The results of computing the divergence and flutter velocities for N= 0 are shown in 
Fig.1 (curves 1 and 2 correspond to (4.1) and (4.2)). The boundary obtained for the static 
stability domain (curve 1) agrees with that presented in /l-3/. The solution of the problem 
of determining the flutter velocity was not obtained in the papers mentioned. Curves 3 and 4, 
outlining the domain within which the desired solution should be found are constructed from 
the results of a qualitative analysis performed in /2/. The boundary of the flutter domain 
is obtained in this paper when the first two terms of the series are kept in the expansion (2.1) 
(curve 21. 
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Fig.1 Fig.2 

The boundaries of the instability domains are presented in Fig.2 as functions of the 
velocity and axial force for a plate with parameter c=50- (1 is the stability domain, 2 is 
divergence, while 3 is the flutter). The subsonic flow, unlike the supersonic flow (/a/, for 
exampleexerts adestabilizinginfluenceontheplatebyreducingthe magnitudeofthecritical com- 
pressive force. For compressive forces significantly exceeding the critical value in a vacuum 
(N = -1) the plate at once drops into the flutter domain. An analogous pattern holds for 
supersonic flow also. 
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